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Squeeze "lm dampers used in rotor assemblies such as aero-engines introduce non-linear
damping forces into an otherwise linear rotor dynamic system. The steady state periodic
response of such rotor dynamic systems to rotating out-of-balance excitation can be
e$ciently determined by using periodic solution techniques. Such techniques are essentially
faster than time marching techniques. However, the computed periodic solutions need to be
tested for stability and recourse to time marching is necessary if no periodic attractor exists.
Hence, an e$cient integrated approach, as presented in this paper, is necessary. Various
techniques have been put forward in order to determine the periodic solutions, each with its
own advantages and disadvantages. In this paper, a receptance harmonic balance method is
proposed for such a purpose. In this method, the receptance functions of the rotating linear
part of the system are used in the non-linear analysis of the complete system. The advantages
of this method over current periodic solution techniques are two-fold: it results in a compact
model, and the receptance formulation gives the designer the widest possible choice of
modelling techniques for the linear part. Stability of these periodic solutions is e$ciently
tested by applying Floquet Theory to the modal equations of the system and time marching
carried out on these equations, when necessary. The application of this integrated approach
is illustrated with simulations and an experiment on a test rig. Excellent correlation was
achieved between the periodic solution approach and time marching. Good correlation was
also achieved with the experiment.
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1. INTRODUCTION

Squeeze "lm dampers are widely used in rotor assemblies, particularly aero-engines, to
stabilize and/or attenuate vibrations and transmitted forces [1]. These elements introduce
non-linear damping forces into an otherwise linear rotor dynamic system. Figure 1 shows
a schematic of a squeeze "lm damper (SFD). The &&journal'' refers to the outer race of
a rolling-element bearing mounted on the shaft. The journal is prevented from rotating but
is free to orbit in an oil-"lled annular clearance in the bearing housing, forming the SFD.
A retaining spring is optionally placed in parallel with the squeeze "lm. This serves to
support the static load on the journal and to prevent it from rotating. Static misalignments
of the journal centre J from the housing centre B aggravate the non-linear e!ects, resulting
in non-circular orbits and increasing the likelihood of non-synchronous vibration [2]. In
the absence of a retainer spring, the journal is prevented from rotating by anti-rotation pins
or dogs. In such a case, the squeeze "lm performs the additional function of a bearing.
However, it cannot support a static load in the absence of a dynamic load and the vibration
is highly non-linear.
22-460X/02/040743#31 $35.00/0 ( 2002 Academic Press



Figure 1. Sections through squeeze "lm damper: (a) transverse cross-section; (b) axial cross-section.
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The techniques used for the determination of the unbalance response of squeeze "lm
damped rotor dynamic systems can be broadly divided into two categories: periodic
solution techniques and time marching methods. Periodic solution techniques employ
analytical methods like the harmonic balance method [1, 3] or the analogous trigonometric
collocation method [2, 4], to determine equilibrium (i.e., steady state) periodic solutions of
assumed fundamental period. These solutions can be either stable (attractors) or unstable
(repellors). The latter are unattainable in practice due to inevitable minor #uctuations in
operating conditions. Time marching methods [5] involve numerical integration of the
system equations from given initial conditions over su$ciently long integration times for
transients to die out and a stable equilibrium solution (attractor) to be reached which is not
necessarily periodic. While periodic solution techniques are essentially much faster than
time marching methods, the solutions thus obtained need to be tested for stability and
recourse to time marching necessary if no periodic attractor exists. In fact, quasi-periodic
and chaotic attractors are possible in squeeze "lm damped systems [2, 6]. Hence, the aim of
this paper is to present an e$cient integrated approach to the determination of the
non-linear response, encompassing a periodic solution technique, stability analysis and time
marching. Such an integrated non-linear modelling approach is of much practical
importance since non-synchronous vibration of both the periodic and aperiodic type
promotes cyclic stresses, aggravating fatigue problems.

Various techniques have been put forward in order to determine the steady state periodic
response of squeeze "lm damped systems, each with its own advantages and disadvantages.
The common strategy is to regard the forces from the non-linear elements as external, acting
on the rotating linear part, which is usually modelled by the "nite element (FE) technique.
In references [1}3] the harmonic balance method or the trigonometric collocation method
is applied to the FE equations of the system, resulting in a set of non-linear algebraic
equations. A condensation technique, involving the inversion of large FE matrices, is then
applied to reduce the number of unknown degrees of freedom to the number of non-linear
degrees of freedom. The stability of the response is then tested (see references [1, 2]) by
applying Floquet Theory to the FE equations, again resulting in large matrices. Such
FE-based periodic solution and stability techniques are clearly impractical for large
systems. In reference [4], a component mode synthesis approach is adopted. The
trigonometric collocation method is applied to the modal equations of the system, making
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the technique tractable for large order systems. This requires the solution of the
eigenproblem of the rotating linear part and modal truncation. However, as observed in
reference [3], this needs to be done at each rotational speed if gyroscopic e!ects are
signi"cant.

As regards the time marching methods, modal analysis over a limited number of modes
[5] is the only viable approach. In reference [5], the transient response of a squeeze "lm
damped rotating system is computed by numerically integrating the modal equations.

In this paper, a receptance harmonic balance method is proposed for the determination of
the periodic solutions to the unbalance response problem. Harmonic balance principles are
applied to the receptance model of the rotating linear part. The required non-linear
algebraic equations are easily extracted in the frequency domain, without any costly
condensation, resulting in a compact model. The receptance functions can be computed by
using any convenient linear rotor dynamic modelling technique. The designer is free to use
any of the various frequency-based modelling techniques that have been proposed as
e$cient alternatives to FE for the computation of the harmonic response of linear rotating
systems, such as transfer matrices (TM), mechanical impedance (MI, or analogously,
dynamic sti!ness), and hybrids like TM/FE, MI/FE [7]. The receptance formulation does
not restrict the designer to the exclusive use of TM as in reference [8], making the proposed
technique e!ective at including the dynamics of the rotor support structure. The stability of
the periodic solutions is e$ciently tested by applying Floquet Theory to a limited number
of the modal equations of the system. This original method for stability determination is
more tractable to large order systems than the alternative methods presented in references
[1, 2]. Time marching is also carried out on the modal equations, when necessary.

Following this introduction, the integrated non-linear modelling technique is developed
(section 2). It is then applied to a test rig and validated with simulations and experiment
(section 3). (A list of Nomenclature is given in Appendix A.)

2. GENERAL THEORY

2.1. MODEL DESCRIPTION

The general model is shown in Figure 2(a). n
SFD

squeeze "lm dampers are "tted between
positions J

i
and B

i
, i"12 n

SFD
, on the rotor and support structure respectively. J

i
refers to
Figure 2. Schematic of squeeze "lm damped rotor dynamic system: (a) general model; (b) rotating out-of-
balance forces.
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the journal centre and B
i
to the bearing housing centre at SFD no. i. A retainer spring can

be optionally placed between J
i

and B
i
. The support structure is in general non-rigid,

exhibiting dynamic behaviour. Note that the rotor and support structure may be linearly
connected at locations other than those of the SFDs. However, these linear connections are
not shown in Figure 2(a). The model can additionally accommodate linear (viscous)
damping forces but material (hysteretic) damping is neglected. The unbalance forces are
assumed to be concentrated at discs located at points U

k
, k"12n

U
, along the rotor and

are given by (Figure 2(b))

P
xk
";

k
X2 sin (Xt#/

k
), P

yk
"!;

k
X2 cos(Xt#/

k
), (1a, b)

where X (rad/s) is the rotational speed. Unbalance moments due to incorrect "xing of the
discs can be additionally considered. These will also be harmonic functions of the circular
frequency X [9].

With reference to Figure 1(a), the squeeze "lm forces Q
x
, Q

y
in the x, y directions,

respectively, on a journal J are given by resolving the radial and tangential forces Q
R
, Q

T
:

Q
x
"!MQ

R
(e, t, e5 , t0 ) sint#Q

T
(e, t, e5 , t0 ) costN, (2a)

Q
y
"Q

R
(e, t, e5 , t0 ) cost!Q

T
(e, t, e5 , t0 ) sint. (2b)

In these equations, e"e/c is the non-dimensional eccentricity of the journal centre, where
c is the radial clearance of the damper, and t is the attitude angle. Note that, in line with
standard SFD modelling practice, it is implicitly assumed that the journal assembly is
radially rigid with respect to the oil "lm. The forces Q

R
, Q

T
are obtained by spatially

integrating the instantaneous pressure distribution p (h, z) within the squeeze "lm after
truncating it below a minimum pressure p

c
at which the "lm is assumed to rupture (cavitate).

For an unsealed damper with two lands of length ¸ each, separated by a deep groove
through which oil is supplied at pressure p

S
(see Figure 1(b)), the distribution p (h, z) is given

by the short bearing approximation [10]:

p (h, z)"
6g
c2

Met0 sin h#e5 cos hN
M1#e cos hN3 Az2!

¸2

4 B#p
s A

z

¸

#

1

2B . (3)

Q
R
, Q

T
are hence computed as

Q
R
"!2R P

L@2

~L@2
P

2n

0

p
m
(h, z) cos h dhdz, Q

T
"!2R P

L@2

~L@2
P

2n

0

p
m
(h, z) sin hdh dz.

(4a, b)

In these equations, p
m
(h, z) is a modi"ed pressure distribution de"ned as

p
m

(h, z)"G
p (h, z),

p
c
,

p (h, z)'p
c

p (h, z))p
c
H . (5)

The cavitation pressure p
c

is taken as !101)325 kPa (absolute zero pressure) [11]. In
Figure 2(a), the squeeze "lm forces on J

i
, i"12n

SFD
, in the x and y directions are Q

xi
, Q

yi
,

while those on B
i
are !Q

xi
, !Q

yi
, since the inertia of the #uid "lm is neglected. Q

xi
, Q

yi
are

non-linear functions of the relative displacements and velocities across the damper.
The remnant linear subsystem is de"ned as the system in Figure 2(a) minus the squeeze
"lm dampers. Let u and f be, respectively, the corresponding (P]1) vectors of the
instantaneous degrees of freedom and instantaneous external forces/moments. In general,
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there will be four &&non-linear'' degrees of freedom associated with each damper location:
X

J
i

, >
J
i

, X
B
i

, >
B
i

(absolute displacements of J
i
, B

i
in x, y directions). However, if the support

structure is rigid (i.e., X
Bi
, >

Bi
"0) this number is reduced to two. It should be noted that,

while P is arbitrarily large, the vector f will be sparse, containing only a "nite number of
non-zero elements, depending on the number of forces/moments that are taken to be
external to the remnant subsystem. This force vector is divided into two component vectors
as

f"f (u
N
, u5

N,
t)"C

fN (uN, u5
N
)

0 D#fR (t), (6)

where f
N

is the (P
N
]1) vector of motion-dependent forces/moments and uN the (P

N
]1)

vector of the associated degrees of freedom. The (P]1) vector fR contains the unbalance
forces, unbalance moments (if any) and static loads (if taken into account) at the appropriate
rows, and zeros elsewhere. The vector u is ordered and partitioned in accordance with
equation (6):

u"C
u
N

u
L
D, (7)

where u
¸

is a (P
L
]1) vector.

2.2. RECEPTANCE HARMONIC BALANCE (RHB) ANALYSIS

In the RHB approach, the vector fN comprises the squeeze "lm forces only. Hence, in this
analysis, P

N
"4n

SFD
for a #exible support structure, while for a rigid support structure,

P
N
"2n

SFD
. The dynamics at excitation frequency u (rad/s) of the rotating remnant linear

subsystem are modelled by a (P]P) receptance matrix R (u, X) of frequency response
functions, given by

u8 "R (u, X) f3 . (8)

u8 and f3 are the complex amplitude vectors of u and f i.e., for harmonic excitation at frequency
u, u and f are given by

u"Re Mu8 e jutN"u
C
cosut#u

S
sinut, f"Re M f3 e jutN"f

C
cosut#f

S
sin ut. (9a, b)

In general, R includes gyroscopic and linear damping terms and hence it is complex,
non-symmetric, and dependent on the rotational speed X as well as the vibration frequency
u. By manipulating equations (8, 9a,b), the complex numbers can be eliminated from
equation (8), resulting in the following pair of equations:

u
C
"RR (u, X) f

C
#RI (u, X) f

S
, u

S
"!RI (u, X) f

C
#RR (u, X) f

S
. (10a, b)

In equation (10a, b) the superscripts R, I respectively, denote the real and imaginary parts of R.
Equilibrium periodic solutions of fundamental frequency - are sought where

-"X/N, N*1. (11)

Hence, u and f can be expressed as Fourier series expansions:

u"u6 #
m
+
s/1

(us
C
cos s-t#us

S
sin s- t), f"f1#

m
+
s/1

(f s
C
cos s-t#f s

S
sin s- t). (12a, b)



748 P. BONELLO E¹ A¸.
For computational reasons, only a "nite number of harmonics m can be considered. Hence,
the solutions sought are essentially approximate. Static loads need not be considered in f if
the elements in vectors uN and u

¸
in equation (7) are measured from the static condition

u
N
"h!h

0
, u

L
"g, (13a, b)

where h (P
N
]1) is the vector of the &&non-linear'' degrees of freedom at the SFD locations,

each measured from the static position of the respective bearing housing centreline. h0 is the
static value of h and contains zeros for the degrees of freedom of the bearing housings. The
remaining rows in h0 contain the static misalignments of the journals in their respective
housings. The (P

L
]1) vector g contains the dynamic displacements at the remaining P

L
degrees of freedom. The receptance matrix R is partitioned in a similar manner to u in
equation (7),

R"C
S

TD, (14)

where the matrices S and T are of dimension (P
N
]P) and (P

L
]P) respectively. Equations

(10a, b) can now be applied in partitioned form to each of the Fourier coe$cient vectors of
the dynamic displacements uN"h!h

0
, u

¸
"g:

h1 !h
0
"S

0
f1 , (15a)

hs
C
"SR (s-, X) f s

C
#SI (s-, X) f s

S
, s"12m, (15b)

hs
S
"!SI (s-, X) f s

C
#SR (s-, X) f s

S
, s"12m, (15c)

g1 "T
0
f1 , (16a)

gs
C
"TR (s-, X) f s

C
#TI (s-, X) f s

S
, s"12m, (16b)

gs
S
"!TI (s-, X) f s

C
#TR (s-, X) f s

S
, s"12m. (16c)

In equations (15, 16), h1 , hsC , hsS are the Fourier coe$cients of h (as in equations (12)) and g6 , gs
C
,

gsS are those of g. Also, S
0
, T

0
contain the zero frequency receptances and are real and

independent of rotational speed.
Equations (15) de"ne a set of P

N
(2m#1) non-linear algebraic equations in an equal

number of unknowns contained in h1 , hs
C
, hs

S
. The unknowns in these vectors are grouped into

one P
N

(2m#1)]1 vector v and the system in equations (15) is written in the form

p (v, X)"0, (17)

where p is a P
N
(2m#1)]1 non-linear vector function of v and X. For given v and rotational

speed X (and hence -"X/N), p (v, X) can be computed. This enables a solution of equation
(17) for v to be obtained by iteration. The only receptance terms in S that need computation
are those linking the non-linear degrees of freedom with the non-zero elements in f. Since
the unbalance forces/moments are harmonic at single frequency X, the only elements in the
Fourier coe$cient vectors f1 , f sC, f sS that need computation by Fourier analysis at each stage
of the iteration are the Fourier coe$cients of the squeeze "lm forces. For given v, the time
histories of these forces are established by computation of the non-linear expressions of
equation (2) at a suitable number of points over one period C"2n/-. Fourier analyses of
these time histories are then performed. Equation (17) is solved using a predictor}corrector
iterative procedure. The Newton}Raphson iterative method is used as the corrector with
initial approximations provided by a linear polynomial (predictor), to trace out a speed



NON-LINEAR ROTOR DYNAMIC SYSTEM MODELLING 749
response curve of periodic solutions. Use of the rotational speed X as the control parameter
to advance the solution procedure along the speed response curve results in failure when
more than one solution v is possible for a given rotational speed X (as in bistable regions).
Arc-length continuation is used to overcome this problem [12]. The control parameter is
changed from X to an &&arc-length'' p. The rotational speed X becomes an unknown,
X"X(p) and an extra equation needs to be added to system (17). Suppose that v and X are
required for p"p

i
i.e., v

i
, X

i
are required. Suppose that v

i~1
, X

i~1
, corresponding to

p"p
i~1

are known. The extra equation to be added de"nes p in the interval p
i~1

)p)p
i
:

g (v, X, p)"
1

c2
Ev!v

i~1
E#A

X

u
0

!

X
i~1
u

0
B
2
!(p!p

i~1
)2"0, (18)

where for a vector a"[a
1
2a

n
]T, EaE"a2

1
#2#a2

n
. c is the radial clearance of any one

of the dampers and u
0

is the lowest natural frequency of the undamped linear system. Note
that c and u

0
are merely introduced in order to work with a non-dimensional arc-length p.

The system of equations to be solved for each given value of p, p
i
, is

G
p (v, X)"0

g (v, X, p)"0H. (19)

The vector of unknowns is now augmented to

v
aug

"C
v

XD . (20)

The solution procedure &&climbs'' along the speed response curve, so that a given value of
p will correspond to just one solution v

aug
, thus eliminating the problem of multiple

solutions. In order to start o! the continuation process at p"0, the initial approximation
for v is provided by the Fourier coe$cients of a time marching solution, when assumed
approximations are unsuccessful.

Upon solution of equation (17) for v over a range of values of X and determination of the
associated values of f1 , fs

C
, f sS, the response in any of the remaining P

L
degrees of freedom can

be found from equations (16). The only receptance terms in T that need computation are
those linking the chosen degree of freedom with the non-zero elements in f.

In equations (15a, 16a), it has been implicitly assumed that all zero frequency terms in S
0
,

T
0
exist. This condition holds when the rotor in the remnant linear subsystem is supported at

not less than two positions. When this is not the case, the rotor is said to be degenerate and
is capable of free rigid body motion, so that some or all of the terms in S

0
and T

0
will be

unde"ned (PR). In such a case, equations (15a) and (16a) are modi"ed as follows.

The static load of the rotor is included in f, concentrated at one or more of the degrees of
freedom in the y direction.

h
0

is omitted and the displacements in h are measured from the static positions of the
bearing housings without the rotor load acting. Similarly, the displacements g at the
remaining degrees of freedom are measured from the static condition without the rotor
weight applied.

In equation (15a), those k rows in S
0

for which the receptances are unde"ned are replaced
by the corresponding rows in the zero frequency value A

0
of the accelerance matrix A where

A"!u2S. (21)
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The terms in A
0
will be de"ned. The corresponding k terms on the left-hand side of (15a) will

be replaced by the corresponding zero frequency (mean) acceleration terms in the Fourier
expansion of uK , and hence will all be zero (by di!erentiation of equation (12a) twice).

The resulting modi"ed k equations, in equations (15a) are a statement of the fact that the
degenerate rotor will be in equilibrium under those elements in the zero frequency force
vector f1 that act on it. These equations are solved along with the remaining P

N
(2m#1)!k

equations in equations (15) as previously described. Only a maximum of 4 of these zero
frequency equilibrium equations can be independent. When k'4, a statically
indeterminate equilibrium problem at zero frequency needs to be solved within equations
(15). A typical case is a rotor that is supported by squeeze "lm dampers only, without
retainer springs, where the number of dampers n

SFD
*3. Such a case is not considered in

this paper.

2.3. DIFFERENTIAL EQUATIONS OF MOTION

The RHB method works exclusively in the frequency domain. However, in order to test
the stability of the equilibrium solutions computed by RHB (and of course, for time
marching purposes), the time domain di!erential equations of motion of the non-linear
system are required. A modal approach is adopted to derive these equations. In this
analysis, in contrast to RHB, the vector fN comprises all the damping forces, linear, as well
as non-linear and any gyroscopic moments (if signi"cant). By considering all these
forces/moments as external, it is possible to work with the modal parameters (i.e., natural
frequencies and mode shapes) of the undamped non-rotating remnant subsystem, which will
be real and independent of rotational speed. The modal parameters can be obtained by
using any convenient linear modelling technique. As shall be illustrated later, receptance
functions can be used to determine both the modal parameters and the number of modes
required. In practice, only a limited number of modes H, will make a signi"cant
contribution to the response and hence

u+Hq, (22)

where q is the (H]1) vector of modal co-ordinates

q"[q
1

2 q
H
]T, (23)

and H is the (P]H) modal matrix

H"[W1 2 WH], (24)

where Wh, h"12H are the mass normalized mode shapes [13]. The corresponding
natural frequencies are contained in the diagonal matrix D, given by

D"diag (u2
1
2 u2

H
). (25)

The modal equations are hence given [5] by

qK#Dq"HT f (u
N
, u5

N
, t), (26)

where f (uN, u5 N, t) is given by equation (6). By partitioning H as follows

H"C
H

N
H

L
D , (27)
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where HN and H
¸

are of dimension (P
N
]H) and (P

L
]H), respectively, uN in equation (7)

can be expressed as

u
N
"H

N
q. (28)

2.4. FLOQUET STABILITY OF EQUILIBRIUM SOLUTIONS AND BIFURCATION

The stability of an RHB-computed equilibrium periodic solution u
E

of fundamental
frequency - is tested by considering the evolution of a small perturbation from it.
De"ning q"-t and ( )@ as di!erentiation with respect to q, the modal equations (26) are
rewritten as

qA#
1

-2
Dq"

1

-2
HT GC

f
N
(u

N
, u@

N
)

0 D#f
R
(q)H , (29)

where equation (6) has been used to substitute for f (u
N
, u@

N
, q). Now, from equation (28)

u
E
"Hq

E
. (30)

u
E
(q) is periodic in q with period 2n and so is q

E
(q), which satis"es equation (29),

qA
E
#

1

-2
Dq

E
"

1

-2
HT GC

f
NE

(u
NE

, u@
NE

)

0 D#f
R
(q)H , (31)

where from equation (28):

u
NE

"H
N
q
E
. (32)

Upon de"ning

z"q!q
E

(33)

and subtracting equation (31) from equation (29),

zA#
1

-2
Dz"

1

-2
[HT

N
HT

L
] C

Lf
N

Lu
N

(u
N
!u

NE
)#

Lf
N

Lu@
N

(u@
N
!u@

NE
)

0 D , (34)

where equation (27) has been used to substitute for H and f
N

(u
N
, u@

N
) has been expanded in

a Taylor series about u
NE

, u@
NE

and only linear terms in (u
N
!u

NE
) and (u@

N
!u@

NE
) retained.

Upon noting from equations (28), (32) and (33) that u
N
!u

NE
"H

N
z, equation (34)

becomes

zA#
1

-2
Dz"

1

-2
HT

N

Lf
N

Lu
N

H
N
z#

1

-2
HT

N

Lf
N

Lu@
N

H
N
z@. (35)

Upon letting

w"C
z

z@D , (36)
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equation (35) can be written in the form

w@"W(q)w, (37)

where

W(q)"C
0

U(q)!
1

-2
D

I
H

V (q)D (38)

U(q)"
1

-2
HT

N

Lf
N

Lu
N

H
N
, V(q)"

1

-2
HT

N

Lf
N

Lu@
N

H
N
. (39a, b)

Since the partial derivatives in the (H]H) matices U (q) and V(q) are evaluated at the
equilibrium conditions u

N
"u

NE
, u

N
"u@

NE
, they are periodic in q with period 2n and hence

so is the (2H]2H) matrix W(q). From Floquet Theory, the stability of equation (37) is
governed by the eigenvalues of the monodromy matrix M [12, 14]. This matrix is e$ciently
computed by an approximate method by Hsu [15]. The periodic interval [0, 2n] is divided
into K equal segments Dq with q

k
, k"12K, the value of q at the midpoint of each segment.

M is then approximated as

M+eW
K
Dq eW

K~1
Dq
2eW

2
Dq eW

1
Dq, (40)

where

W
k
"W (q

k
). (41)

The above matrix product converges to the exact matrix M as KPR. However, in the
simulations performed in this paper, K"200 gave highly accurate results with little
computational e!ort. For u

E
stable,

Dj
i
D(1, i"122H: (42)

i.e., the eigenvalues of M (also known as Floquet multipliers) lie within a unit circle in the
complex plane centred at the origin. If, as a control parameter (e.g., rotational speed) is
changed, the leading eigenvalue j

l
(eigenvalue of largest magnitude) escapes from the circle,

then u
E

becomes unstable (i.e., a bifurcation occurs) [12]. If j
l
escapes the unit circle along

the positive real axis, then any disturbance from u
E

results in a jump to a periodic attractor
of the same period. If j

l
escapes the unit circle along the negative real axes then a period-

doubling bifurcation occurs. If a pair of complex conjugate eigenvalues j
l
, j*

l
escape the

circle, then a secondary Hopf bifurcation (quasi-periodicity) occurs. Note that, for an
unstable solution u

E
, the position of the corresponding j

l
on the complex plane is not

a de"nite indicator of the type of attractor on which the disturbed trajectory will settle down
since Floquet Theory applies for small perturbations about u

E
. The attractor is positively

identi"ed by time marching from unstable equilibrium initial conditions.
In reference [1], M was computed from its text-book de"nition [12, 14]. Such a method is

far too slow to test for the stability of a full set of equilibrium periodic solutions. In reference
[2], Hsu's fast method was used, as in the present work. However, since Floquet Theory was
applied to the FE equations rather than the modal equations, the order of the matrices in
the exponents of the matrix product in equation (40) was (2P]2P), making it impractical
for large order systems. With the present method, the matrices in the exponents are cut
down in size to (2H]2H) where H@P.
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2.5. TIME MARCHING

For time marching purposes, the system of equations (26) is expressed as 2H "rst order
di!erential equations

C
q5
qK D"C

0 I
H

!D 0DC
q

q5 D#C
0

HT fD (43)

and integrated numerically from given initial conditions q(t"0), q5 (t"0) by using an
integrator suitable for sti! di!erential equations [16].

The result of the Floquet stability test for an equilibrium solution u
E

can be con"rmed by
time marching from equilibrium initial conditions q

E
(t"0), q5

E
(t"0). If u

E
is unstable, the

slightest inevitable errors in the initial conditions and the local integration error in each
time step cause the time marching trajectory to diverge from the equilibrium one. On the
other hand, for u

E
stable, both trajectories remain closely matched. This method serves to

identify positively the attractor on which the disturbed trajectory will settle down, in the
case of u

E
being unstable. The initial conditions q

E
(t"0), q5

E
(t"0) are found by a modal

decomposition of the RHB solution u
E

as follows. The RHB responses at H degrees of
freedom, arbitrarily chosen, are computed. These are contained in the vector u

HE
. The

corresponding velocity vector u5
HE

is then formed (by di!erentiation of equation (12a)).
From equation (30)

q
E
(t"0)"H~1

H
u
HE

(t"0), q5
E
(t"0)"H~1

H
u5
HE

(t"0), (44a, b)

where the matrix H
H

(H]H) comprises H rows of H, respectively corresponding to the
chosen H degrees of freedom in u

HE
.

2.6. INTEGRATED NON-LINEAR MODELLING APPROACH

The integrated non-linear modelling approach presented in this paper is summarized in
Figure 3. The operating conditions (unbalance, static misalignments at the dampers) are
"rst speci"ed. A speed response curve of approximate N"1 equilibrium periodic solutions
(see equation (11)) is then traced out by using RHB with a suitable number of harmonics m.
The resulting RHB solution set is then tested for stability by using the Floquet test. Any
unstable branches of the speed response curve are then classi"ed according to the position
of j

l
on the complex plane. An unstable equilibrium cycle along one such branch is then

considered. Time marching from initial conditions on the cycle locates an attractor. If the
resulting attractor is N¹-periodic, where ¹ is the period of rotation ("2n/X), then the
branch is reanalyzed by using RHB with the appropriate value for N. If the attractor is
aperiodic then the whole branch has to be reanalyzed by time marching. Frequency spectra
(modulus of Fast Fourier Transform (FFT)) and Poincare maps are used to analyze the time
marching solution. Poincare maps show a stroboscopic picture of the x}y vibration
trajectory (orbit) at a given location at intervals of ¹ i.e., the &&return points'' x (k¹), y (k¹),
k"0, 1,2 . Hence, N¹-periodic motion would appear as N distinct points on the map.

3. APPLICATION

3.1. DESCRIPTION OF TEST RIG

The model is applied to the experimental rig illustrated in Figure 4. The mild steel
stepped shaft runs in self-aligning ball-bearings at H and J. The one at H is rigidly



Figure 3. Flow chart for integrated non-linear analysis process (RHB"receptance harmonic balance).
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supported while that at J is free to orbit in an oil-"lled annular clearance in the bearing
housing B, forming the SFD. Two con"gurations (i, ii) of the rig are considered. In the "rst
con"guration (i), four #exible bars (labelled (5) in Figure 4) connect the outer race of the
ball-bearing at J (i.e., the journal) to the frame, constituting an isotropic retainer spring of
sti!ness 123)4kN/m. If the frame is taken to be rigid and B is rigidly bolted to the frame, the
spring is e!ectively in parallel with the squeeze "lm. However, since the spring is grounded
at F rather than B, the static eccentricity of the journal J in the bearing housing B can be
varied by altering the position of B. In con"guration (ii) the retainer spring is removed and
the journal J rests on the bottom of the clearance in the static condition. In this case, an
anti-rotation bolt is used to prevent the journal from rotating with the shaft. The SFD is of
the type shown in Figure 1(b). Its parameters are: radial clearance c"0)132 mm, bearing
bore R"50)022 mm, land length ¸"9)72 mm. Oil of viscosity g"0)0045Ns/m2 is
supplied through three holes, equally spaced along the groove. With reference again to
Figure 4, unbalance masses are attached to the overhung disc at U. The x and y vibrations



Figure 4. Test rig used for experimental validation of simulations: (1) motor driven pulley; (2) #exible coupling;
(3) self-aligning ball-bearing (H); (4) #exible shaft; (5) #exible bar]4 (retainer spring); (6) self-aligning ball-bearing
(J); (7) bearing housing (B); (8) squeeze "lm damper (SFD); (9) overhung unbalance disc (U); (10) frame and
bedplate.
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are monitored at three positions J, U, and M. M is the midpoint of the 50mm diameter
section of the shaft. Safety regulations limit the maximum operational speed to 100 rev/s. All
results presented refer to an unbalance of ;"5)1]10~4 kg m at U. In con"guration
(i) (retainer spring in place), the static misalignments e

0xJ
("e

0xJ
/c), e

oyJ
("e

oyJ
/c) of J in

the x and y directions are, respectively, equal to 0)0, !0)8.

3.2. MODEL APPLICATION

3.2.1. Introduction

The mechanical impedance (MI) method [7] is used to compute the receptances of the
remnant linear subsystem. The frame, bearing housing B and self-aligning ball-bearings at
H and J are taken to be rigid; hence the remnant subsystem will be the shaft pinned at H and
either sprung or unsprung (free) at J (i.e., con"gurations (i), (ii) respectively). The moments of
inertia of the disc and shaft are neglected, and therefore, so are any gyroscopic e!ects.
Hence, in the remnant subsystem, the xz and yz planes are uncoupled. The SFD is assumed
to be the only source of damping. The detailed input to the MI modelling program is given
in reference [17]. The shaft elements, modelled as Timoshenko beams, are continuous with
respect to inertia and the impedance matrix of a uniform element is &&exact'', irrespective
of element length [7]. Hence, in this application, only eight elements are necessary. The
"rst two undamped critical speeds of con"guration (i) are found to be 14 and 40 rev/s by MI.
In the interpretation of both experimental and simulated results, it is important to
know the undamped critical speeds of the rig with the SFD clearance shimmed solid
(i.e, damper &&locked'': shaft pinned at H and J). These speeds are found to be 31 and 91 rev/s
by MI.

In the non-linear modelling, for both the RHB and modal equations, P
N
"2 and

f
N
"C

Q
x
(X

J
, >

J
, XQ

J
, >Q

J
)

Q
y
(X

J
, >

J
, XQ

J
, >Q

J
)D , (45)

where Q
x
, Q

y
are the squeeze "lm forces on J (equation 2)) and X

J
, >

J
are the displacements

of J measured from the centreline of the rigid bearing housing B. The unbalance forces P
x
, P

y
at U are given by putting /

k
"0 in equation (1) and dropping the subscript k.
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3.2.2. Con,guration (i) (retainer spring in place)

In this case

u
N
"C

X
J
>
J
D!C

e
0xJ

e
0yJ
D . (46)

In the RHB approach

X
J
"XM

J
#

m
+
s/1

(as
XJ

cos s- t#bs
XJ

sin s- t), >
J
">M

J
#

m
+
s/1

(as
YJ

cos s- t#bs
YJ

sin s- t),

(47a, b)

and

Q
x
"QM

x
#

m
+
s/1

(ps
x
cos s- t#qs

x
sin s- t), Q

y
"QM

y
#

m
+
s/1

(ps
y
cos s- t#qs

y
sin s- t),

(48a, b)

where the Fourier coe$cients of the squeeze "lm forces are given by

QM
x
"

1

C P
C

0

Q
x
dt, ps

x
"

2

C P
C

0

Q
x
cos s-tdt, qs

x
"

2

C P
C

0

Q
x
sin s-t dt, (49a)

QM
y
"

1

C P
C

0

Q
y
dt, ps

y
"

2

C P
C

0

Q
y
cos s-tdt, qs

y
"

2

C P
C

0

Q
y
sin s-t dt. (49b)

Hence, the RHB equations (15) are writting as:

XM
J
!e

0xJ
"QM

x
a
JJ

(0), >M
J
!e

0yJ
"QM

y
b
JJ

(0), (50a1, a2)

as
XJ
"a

JJ
(s-) ps

x
, as

YJ
"b

JJ
(s- ) ps

y
!d

Ns
b
JU

(s- );X2, s"12m. (50b1, b2)

bs
XJ

"a
JJ

(s- ) qs
x
#d

Ns
a
JU

(s- );X2, bs
YJ
"b

JJ
(s- ) qs

y
, s"12m, (50c1, c2)

where

d
Ns
"G

0 sON

1 s"NH ; (51)

(see equation (11)) and a
ij
(u) and b

ij
(u) are the receptances connecting the forces (in N) at

position j in the x and y directions, respectively, with the responses (in m) in the
corresponding directions at position i. These receptances are real and independent of
rotational speed as a result of the simplifying assumptions made. Also, since the remnant
system is isotropic, a

ij
(u)"b

ij
(u). For solution, equations (50) are expressed in the form

(17) where v is a 2(2m#1)]1 vector given by

v"[XM
J
>M
J

a1
XJ

a1
YJ

2 am
XJ

am
YJ

b1
XJ

b1
YJ

2 bm
XJ

bm
YJ

]T . (52)

Upon solution and determination of the Fourier coe$cients of Q
x
, Q

y
, the Fourier

coe$cients of the dynamic response at a general position P:

X
P
"XM

P
#

m
+
s/1

(as
XP

cos s- t#bs
XP

sin s- t), >
P
">M

P
#

m
+
s/1

(as
YP

cos s- t#bs
YP

sin s- t),

(53a, b)
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are determined from equations (50) by omitting the terms e
0xJ

, e
0yJ

, replacing the subscript
J by P in the displacement Fourier coe$cients on the left-hand sides of equations (50) and
replacing the ,rst subscript J by P in the receptance terms on the right-hand sides of
equations (50).

For the modal equations of motion, four modes of bending vibration in each of the xz and
yz planes are considered so that H"8 and the vector q (equation (23)) and matrix
D (equation (25)) are written as

q"[q
x1

q
y1

2 q
x4

q
y4

]T , (54)

D"diag (u2
x1

u2
y1

2 u2
x4

u2
y4

). (55)

The modal equations hence reduce to

qK
xr
#u2

xr
q
xr
"tr

xJ
Q

x
(X

J
, >

J
, XQ

J
, >Q

J
)#tr

xU
P
x
(t), r"124, (56a)

qK
yr
#u2

yr
q
yr
"tr

yJ
Q

y
(X

J
, >

J
, XQ

J
, >Q

J
)#tr

yU
P

y
(t), r"124, (56b)

where tr
xi
, tr

yi
, r"124, are the undamped mass normalized mode shapes at position i in

the x and y directions respectively. Note that u
xr
"u

yr
and tr

xi
"tr

yi
(isotropic system). In

equations (56), from equation (28):

C
X

J
>
J
D"C

e
0xJ

e
0yJ
D#H

N
q, (57)

where

H
N

(2]8)"C
t1
xJ

0 2 t4
xJ

0

0 t1
yJ

2 0 t4
yJ
D . (58)

The undamped natural frequencies u
x1
2u

x4
are found by locating the "rst four zeros of

the determinant of the impedance matrix Mz
ij

(u)N, given by

Mz
ij
(u)N"Ma

ij
(u)N~1/ju , (59)

upon using Muller's algorithm [18]. As the natural frequencies are known, the required
mode shapes are found by decomposing the receptances a

ij
(u) over four modes by using an

approximate truncated modal series expansion for a
ij
(u) [13],

a
ij
(u)+

4
+
r/1

Ar
ij

u2
xr
!u2

, (60)

where Ar
ij
, r"124, are the modal constants, given by [13]

Ar
ij
"tr

xi
tr

xj
. (61)

The computed modal parameters are given in Table 1. Figures 5(a, b) compare the &&exact''
receptances a

JJ
(u), a

JU
(u), computed by MI, with the approximate receptances,

reconstructed from four modes (i.e, the right-hand side of equation (60)). It is evident that
satisfactory agreement prevails over a frequency range of 0}500 Hz, covering "ve harmonics
of the top rotational speed of the rig (100 rev/s).



TABLE 1

;ndamped modal parameters of con,guration (i) in one plane of vibration

Mode f
xr
"u

xr
/(2n) Ar

JJ
"tr

xJ
tr
xJ

Ar
JU

"tr
xJ

tr
xU

no. r (Hz) (]10~3 kg~1) (]10~3 kg~1)

1 13)7 54)235 77)803
2 40)4 38)334 !34)209
3 173)9 251)196 !38)783
4 334)7 104)839 !13)606

Figure 5. Receptances for con"guration (i) (retainer spring in place). (a) Point receptance at J, a
JJ

, (b) Transfer
receptance between J and U, a

JU
: **, exact (MI); } } } , reconstructed from four modes.
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For stability and bifurcation analysis, the matrices Lf
N
/Lu

N
, Lf

N
/Lu@

N
in (39a, b) are given

by

Lf
N

Lu
N

"C
LQ

x
LX

J

LQ
x

L>
J

LQ
y

LX
J

LQ
y

L>
J
D ,

Lf
N

Lu@
N

"C
LQ

x
LX@

J

LQ
x

L>@
J

LQ
y

LX@
J

LQ
y

L>@
J
D . (62a, b)

The partial derivatives in these matrices are evaluated numerically at the RHB-computed
periodic equilibrium solution from the expressions for Q

x
and Q

y
given in equation (2).

3.2.3. Con,guration (ii) (no retainer spring)

In this case, the rotor in the remnant linear subsystem is degenerate since it is capable of
free rigid body rotation about H, so that a

ij
(0) is unde"ned at all positions i along the rotor

(except the node H). It is assumed that the distributed gravity load can be replaced by
a concentrated load at J equal to=, the equivalent static load at the squeeze "lm, given by

="

+ M
x

l
J

, (63)



TABLE 2

;ndamped modal parameters of con,guration (ii) in one plane of vibration

Mode f
xr
"u

xr
/(2n) Ar

JJ
"tr

xJ
tr
xJ

Ar
JU

"tr
xJ

tr
xU

no. r (Hz) (]10~3 kg~1) (]10~3 kg~1)

1 0 66)771 81)309
2 39)0 31)507 !36)914
3 171)6 248)118 !39)777
4 334)2 102)339 !13)415

Figure 6. Receptances for con"guration (ii) (no retainer spring)) (a) Point receptance at J, a
JJ

, (b) Transfer
receptance between J and U, a

JU
: **, exact (MI); } } } , reconstructed from 4 modes.
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where + M
x
is the sum of clockwise moments of gravity forces about H and l

J
the distance of

SFD from pivot H.= is computed as 151N. Accordingly, the equations in section 3.2.2 are
modi"ed as follows.

The vector [e
0xJ

e
0yJ

]T is omitted.
The zero frequency RHB equations (50a1, a2) are replaced by the following equilibrium

equations (obtained by taking moments about H):

QM
x
"0, QM

y
!="0. (64a, b)

The zero frequency Fourier coe$cients XM
P
, >M

P
in equations (53a, b) are given by

XM
P
"

l
J
l
P

XM
J
, >M

P
"

l
J
l
P

>M
J
, (65a, b)

where l
P
is the distance of P from pivot H. The reason for this is that the only zero frequency

forces acting on the rotor are concentrated at J, producing no deformation. X
P
, >

P
are now

measured from the line joining H to the centreline of B.
An additional term !tr

yJ
= is added to equations (56b) to account for the static load.

As for con"guration (i), the modal equations cover four modes in each of the xz and yz
planes. The computed modal parameters are shown in Table 2, where it is seen that the "rst
mode for each plane is the rigid body mode (0Hz). Figures 6(a, b) compare the &&exact''



TABLE 3

Static eccentricity adjustment for e
0xJ

"0)0, e
0yJ

"!0)8 (con,guration (i))

h e
0xJ

h e
0yJ(3) (3)

(a1) x direction, 253C (a2) y direction, 253C
0 !0)03 0 !0)63

90 0)03 90 !0)84
180 !0)03 180 !0)96
270 !0)07 270 !0)77
e6
0xJ

!0)03 e6
0yJ

!0)80

(b1) x direction, 333C (b2) y direction, 333C
0 0)02 0 !0)66

90 0)05 90 !0)91
180 0)07 180 !1)00
270 !0)05 270 !0)86
e6
0xJ

0)02 e6
0yJ

!0)86
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receptances a
JJ

(u), a
JU

(u), computed by MI with the approximate receptances,
reconstructed from four modes. As in con"guration (i), satisfactory agreement prevails over
a frequency range of 0}500 Hz, covering "ve harmonics of the top rotational speed of the rig
(100 rev/s).

3.3. EXPERIMENTAL WORK

For con"guration (i) (retainer spring in place), the static eccentricities (misalignments) of
the journal J from the bearing housing B were adjusted by loosening the screws bolting B to
the frame at G (see Figure 4). A small clearance in the screw holes through B allowed its
position to be adjusted prior to retightening. The adjustment of the eccentricity was
complicated by the initial bend (&&run-out'') of the shaft, which meant that the static
misalignment varied as the shaft was turned by hand. Hence, the eccentricity was adjusted
in the vertical and horizontal directions for four angular positions (0, 90, 180, 2703) of the
shaft (see Table 3). The angular position 03 corresponds to the &&high spot'' on the shaft at the
SFD position. For each direction x, y the average eccentricity for the four angular positions
was brought as close as possible to the desired eccentricity in that direction. The static
misalignment was rechecked after each experiment, when the rig was hot (Table 3). For both
con"gurations (i, ii) the x, y vibration data (time histories) were obtained by three pairs of
orthogonal displacement transducers located at J, U and M for each speed in the range
10}100 rev/s, in incremental steps of 2 rev/s. The oil supply pressure was set to 1 bar in
con"guration (i) and 1.2 bar in con"guration (ii). An eight channel HP3566A' Analyzer
coupled with a personal computer was used to capture the time histories. For con"guration
(ii) only, the frequency analyzer only acquired the alternating component of the response.
The time capture length was 0)5 s. Hence the resolution of the frequency spectrum was 2Hz.
This resolution was generally considered adequate since a 2 rev/s step was the smallest
attainable with the speed controller. However, the data length was increased to 2 s at those
speeds where a more detailed frequency spectrum was required. The data were converted to
MA¹¸AB' data format for analysis using standard data conversion program.
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3.4. RESULTS AND DISCUSSION

3.4.1. Introduction

In this section, the simulated results are compared with measurements with the aim of
illustrating the practical value of the integrated non-linear model. It is outside the scope of
this paper to give a detailed interpretation of the experimental results. This can be found in
reference [17], where the in#uence of cavitation within the squeeze "lm is discussed.
Moreover, in the simulations, no attempt was made to compensate for the small residual
out-of-balance on the shaft left after balancing. In all simulated and experimental results
presented, the vibration response at all locations is normalized with respect to the radial
clearance c. Moreover, the orbital motion at the SFD (J) is presented with respect to
the clearance circle, of radius c, to which the motion of the centre of the journal, J, is
con"ned. Orbital motions at locations U and M are presented with respect to their static
positions.

3.4.2. Con,guration (i) (retainer spring in place)

In Figures 7(a}f ), the experimentally determined unbalance response (half peak-to-peak
amplitude) in the x and y directions at the locations, J, U, M is compared with the
corresponding RHB, N"1 predictions with m"5 harmonics. In Figures 7(a, b), which
refer to the response at J, an anti-resonance speed of around 52 rev/s is evident. This
corresponds to the anti-resonance in the transfer receptance a

JU
(52Hz) in Figure 5(b). The

maximum amplitude at the three locations lies within the range 32}36 rev/s. It is seen that
the vibration at all three locations is reasonably well predicted, with the exception of the
disc vibration in the x direction in the range 26}36 rev/s (Figure 7(c)). A possible
explanation for this is given by comparing the predicted and measured orbital motion in
Figure 8, which refers to locations U and M at 28 and 38 rev/s. The motion at the disc (U) is
characterized by an elliptical orbit. The orientation of this orbit changes as the resonance
region is traversed. The mismatch in orientation between predicted and measured orbits at
28 rev/s, Figure 8(a1), results in a large discrepancy in the peak-to-peak amplitude in the
x direction, but little discrepancy in the y direction. The predicted and measured disc orbits
are realigned at 38 rev/s and beyond (Figure 8(a2)). The orbits at M below 38 rev/s are
sharply kinked, as shown in Figure 8(b1), re#ecting the strong presence of harmonics of the
rotational speed. The kinked outline of the measured orbit in Figure 8(b1) is correctly
predicted by RHB with m"5 harmonics. These sharp kinks disappear at 38 rev/s and
beyond (Figure 8(b2)). The corresponding orbits at the SFD (J) for 28 and 38 rev/s
are shown in Figures 12(a) and 12(c) respectively. In particular, the sharpening of the
left-hand &&tail'' of the SFD orbit at 38 rev/s is correctly predicted. Such pronounced tails
should be avoided in practice, since the rapid decelerations and accelerations in the vicinity
of the tail may lead to sudden large changes in the force transmitted to the engine
frame [19].

The results of the Floquet stability test for the RHB, N"1 predictions are shown in
Figure 9. Instability is detected in the range 32}35 rev/s (Figure 9(a)), the magnitude of
the leading Floquet multiplier being greater than unity and the multiplier complex
(Figure 9(b)). This indicates that a secondary Hopf bifurcation occurs at around resonance,
resulting in quasi-periodic motion in this region. This result is con"rmed by time marching
the modal equations from equilibrium initial conditions at two speeds, 30 and 34 rev/s,
which are, respectively, outside and inside this instability range. In each case, initial
conditions are derived from a modal decomposition of the RHB solution (equations
(44a,b)). Figure 10 refers to 30 rev/s. The time marching solution covers the last 5 shaft



Figure 7. Unbalance response (normalized half peak to peak) for con"guration (i), e
0xJ

"0, e
0yJ

"!0)8.
(a) SFD (J), x direction; (b) SFD (J), y direction; (c) disc (U), x direction; (d) disc (U), y direction; (e) mid-shaft (M),
x direction; (f ) mid-shaft (M), y direction: *L**, Predictions, RHB, N"1, m"5; *K**, measurement.
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revolutions out of a total of 15 revolutions. The RHB solution is overlaid on the same axes.
It is seen that the trajectories remain closely matched, indicating that the RHB-computed
N"1 periodic cycle at 30 rev/s is indeed an attractor. Figure 10 also serves to highlight the
excellent correlation that exists between the RHB and modal techniques at all three
locations J, U, M. At 34 rev/s (Figure 11(a)), the time marching and RHB trajectories



Figure 8. Orbital motion of U and M for con"guration (i), e
0xJ

"0, e
0yJ

"!0)8. (a1) U (disc), 28 rev/s;
(b1) M (mid-shaft), 28 rev/s; (a2) U (disc), 38 rev/s; (b2) M (mid-shaft), 38 rev/s: } } }, Prediction: RHB, N"1,
m"5; **, measurement (0)5 s).

Figure 9. Floquet stability test for RHB solutions N"1, m"5, con"guration (i) e
0xJ

"0, e
0yJ

"!0)8:
(a) absolute value of leading multiplier; (b) imaginary part of leading multiplier.
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Figure 10. Stability check by time marching from equilibrium initial conditions: predicted orbits at 30 rev/s,
con"guration (i), e

0xJ
"0, e

0yJ
"!0)8. (a) J (SFD); (b) U (disc); (c) M (mid-shaft) } } }, RHB, N"1, m"5;**,

modal solution.

Figure 11. Stability check by time marching from equilibrium initial conditions at 34 rev/s, con"guration (i),
e
oxJ

"0, e
0yJ

"!0)8. (a) SFD orbit: ****, RHB, N"1, m"5;**, modal solution ("rst 80 revs.), (b) PoincareH
map over 160 shaft revs. (unstable equilibrium point is E, &&*'').
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Figure 12. Orbital motion at SFD only for con"guration (i), e
0xJ

"0, e
0yJ

"!0)8. (a) 28 rev/s; (b) 34 rev/s;
(c) 38 rev/s: } } }, Prediction: RHB, N"1, m"5; **, measurement (0)5 s).

NON-LINEAR ROTOR DYNAMIC SYSTEM MODELLING 765
diverge. The PoincareH Map (Figure 11(b)) shows the return points spiralling out of the initial
unstable equilibrium point E and settling into a &&drift ring'' of points that never quite
coincide. This is the hall mark of quasi-periodic motion and is the result of two irrationally
related fundamental frequency components [12]. Aperiodic motion was also veri"ed in
practice, over a speed range of 30}36 rev/s, as shown in Figure 12(b). Figure 13 shows the
predicted and measured steady state orbits at the SFD at 34 rev/s and their frequency
spectra for the y vibration. The measurement acquisition time was increased to 2 s
(frequency resolution 0)5 Hz). Both predicted and measured spectra exhibit sub-
synchronous activity. The predicted spectrum (Figure 13(a2)) has a strong 9 Hz component
and sum and di!erence frequency components are apparent e.g., 25 ("34!9) Hz, 43
("34#9) Hz, 59"(68!9) Hz. Sum and di!erence frequency components are
characteristic of quasi-periodicity. The measurement (Figure 13(b2)) also contains the 9 Hz
component, along with some other components not predicted, such as 13 Hz and
21 ("34!13) Hz. The fuzzy continuity in the measured spectrum is an indication
of chaos. It is possible that the quasi-periodic attractor was disturbed due to
the variation of the static misalignment with rotation due to the initial bend in the shaft
(Table 3).



Figure 13. SFD orbits and spectra at 34 rev/s for con"guration (i), e
0xJ

"0, e
0yJ

"!0)8. (a1) predicted SFD
orbit (steady state); (b1) measured SFD orbit (2 s); (a2) predicted spectrum, y direction; (b2) measured spectrum,
y direction.
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3.4.3. Con,guration (ii) (no retainer spring)

In Figures 14(a}f) the experimentally determined unbalance response (half peak-to-peak
amplitude) in the x and y directions at the locations J, U, M is compared with the
corresponding RHB, N"1 predictions with m"5 harmonics. The following observations
can be made.

(1) At the SFD, in the y direction especially, there is hardly any vibration except in the
regions around 31 and 90 rev/s. These correspond to the "rst two undamped critical speeds
of the pinned}pinned shaft (31, 91 rev/s). The recorded values for half peak-to-peak
amplitude at the SFD in the y direction around the "rst two critical speed regions and in the
x direction, around the "rst, are actually greater than the radial clearance. This was
probably due to the anti-rotation bolt acting on the outer race of J not functioning
e!ectively, since the displacement probes at J were aimed at targets projecting from the
outer race of J.

(2) Around the "rst critical speed (31 rev/s) the predicted speed response curve at all
locations is very complicated, with multiple solutions.

(3) Except for location M in the y direction (Figure 14(f)), the vibration beyond 80 rev/s is
under-predicted by the RHB N"1 method, at all other locations, especially at the SFD.
The disc vibrations (Figures 14(c, d)) are generally reasonably well predicted.



Figure 14. Unbalance response (normalized half peak to peak) for con"guration (ii) (a) SFD (J), x direction;
(b) SFD (J), y direction; (c) Disc (U), x direction; (d) Disc (U), y direction; (e) Mid-shaft (M), x direction; (f) Mid-shaft
(M), y direction: *L**, Predictions, RHB, N"1, m"5; *K**, measurement.
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The results of the Floquet stability test are shown in Figure 15. As can be seen, the RHB
solutions outside the critical speed regions are on the threshold of stability. Around the "rst
critical speed (30}31 rev/s) a multiplicity of solutions exists, some of which are stable, some
unstable. Beyond 82 rev/s, all the RHB computed N"1 solutions are clearly unstable. This
helps to explain observation (3) above.



Figure 15. Floquet stability test for RHB solutions N"1, m"5, con"guration (ii): absolute value of leading
multiplier.

Figure 16. SFD orbit and spectra at 84 rev/s for con"guration (ii). (a1) predicted SFD orbit (steady state);
(b1) measured SFD orbit (0)5 s) * &&a.c.'' only; (a2) predicted spectrum, y direction; (b2) measured spectrum,
y direction.
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Figure 17. PoincareH maps for predicted SFD motion in Figure 16(a1). (a) 80 revolutions; (b) further 160
revolutions.

Figure 18. Waterfall diagrams of y vibration at J (SFD) for con"guration (ii). (a) y direction, predicted;
(b) y direction, measured.
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Con"guration (ii) was reanalyzed with the aim of constructing waterfall diagrams,
showing the frequency spectrum of the response at di!erent speeds. This was done by
integrating the modal equations over 120 revolutions for each speed in the range
24}100 rev/s in incremental steps of 2 rev/s, using the "nal conditions of the previous speed
as initial conditions for the next speed. Only the last 0)5 s of each response was analyzed.
This was generally adequate to eliminate transients. Figure 16 compares the steady state
modal solution at the SFD for 84 rev/s Figure 16(a1), with the measurement, Figure 16(b1).
As mentioned earlier, in this con"guration, the frequency analyzer only acquired the
&&alternating'' component of the vibration. However, the measured orbit still bears a striking
resemblance to the predicted orbit. Both orbits consist of two sets of opposing loops with
a concentration of trajectories at the lower right-hand part of the orbit. Figures 16(a2, b2)
show the corresponding frequency spectra for the y vibration. The frequency resolution is
2 Hz. Strong sub-synchronous components that loosely approximate to one-third and
two-thirds sub-harmonic components appear in both measurement (32, 52 Hz respectively)
and prediction (30, 54 Hz respectively), Additional minor sub-synchronous components are
also evident in both measurement (22, 62 Hz) and prediction (24, 60 Hz). It is seen that most
of the non-synchronous components are reasonably well predicted. The steady state
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predicted motion in Figure 16(a1) was examined with PoincareH maps. Figure 17(a) shows
the PoincareH map over 80 shaft revolutions while Figure 17(b) shows a further 160
revolutions. It is seen that the general shape of the map is repeatable and that the return
points seem to exhibit the fractal quality of a strange (chaotic) attractor [12]. The third-
order sub-harmonic activity is prevalent in the region of the second pin}pin critical speed as
shown in both predicted and measured waterfall diagrams for the y response: see Figure 18.
The sub-harmonic resonance in this region is caused by the rotational speed being close to
the three times the "rst pin}pin critical speed (31 rev/s).

4. CONCLUSIONS

In this paper, an e$cient integrated technique for the non-linear modelling of unbalanced
squeeze "lm damped rotor dynamic systems is developed. A receptance harmonic balance
(RHB) technique is proposed for the determination of the steady state periodic response.
This method is versatile and tractable for large order systems. The stability of the periodic
response is tested by applying Floquet Theory to the modal equations of the system. The
stability technique developed is more practical for large order systems than current methods
in use. The results of the stability test can be con"rmed by time marching the modal
equations from equilibrium initial conditions obtained from a modal decomposition of the
RHB solution. Time marching is also used to analyze aperiodic motion. The integrated
technique is applied to a squeeze "lm damped rotor-bearing system in two con"gurations.
Excellent correlation between the RHB solutions and modal analysis is achieved.
Correlation with experimental results is also satisfactory. For the case studied, it is correctly
predicted that for a highly eccentric damper with retainer spring, around the "rst pin}pin
critical speed, the rotor is prone to aperiodic motion with sub-synchronous frequency
components. The predicted aperiodic motion is of the quasi-periodic type. In the case of the
unsupported squeeze "lm, the model successfully predicts strong third order sub-harmonic
activity when the rotational speed is close to three times the "rst pin}pin critical speed.

While the technique presented has been developed for squeeze "lm damper applications,
it is clear that it can be adapted to rotor dynamic systems with other types of non-linear
elements by using the appropriate forcing functions in the vector f

N
, equation (6), instead of

the expressions in equations (2a, b).
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APPENDIX A: NOMENCLATURE

as
XJ

, as
YJ

, as
XP

, as
YP

cosine coe$cients in Fourier expansions of X
J
, >

J
, X

P
, >

P
respectively

Ar
ij

rth modal constant of receptance a
ij

(u), equation (61) (kg~1)
A

0
zero frequency value of accelerance matrix A, equation (21)

bs
XJ

, bs
YJ

, bs
XP

, bs
YP

sine coe$cients in Fourier expansions of X
J
, >

J
, X

P
, >

P
respectively

c radial clearance of damper (m)
D diagonal matrix of squares of natural frequencies, de"ned in equation (25)
e eccentricity of J from B, Figure 1(a) (m)
e
0xJ

, e
0yJ

static misalignments of J from B in x and y directions respectively (m)
f, f

N
, f

L
, f

R
force vectors de"ned in equation (6)

f3 complex amplitude of f for f harmonic
f
C
, f

S
cosine and sine coe$cient vectors of f for f harmonic, equation (9b)

f1 , f s
C
, f s

S
Fourier coe$cient vectors of f, equation (12b)

g (v, X, p) arc-length function, equation (18)
g &&linear'' degrees of freedom vector, de"ned in equation (13b)
g6 , gs

C
, gs

S
Fourier coe$cient vectors of g, as in equation (12a)

h vector of non-linear degrees of freedom at squeeze "lm dampers
h
0

static value of h
h1 , hs

C
, hs

S
Fourier coe$cient vectors of h, as in equation (12a)
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H total number of modes considered in modal solution
H, H

N
, H

L
modal matrices de"ned in equations (24), (27)

H
H

matrix comprising H rows of H, equations (44a, b)
I
n

n]n unit diagonal matrix i.e. with 1's on leading diagonal
K total number of subdivisions for computation of M, equation (40)
l
J
, l

P
distances of J and P from ball-bearing H in Figure 4 (m)

¸ land length (m)
m total number of harmonics taken in receptance harmonic balance solution
M monodromy matrix, equation (40)
n
SFD

, n
U

number of squeeze "lm dampers, unbalance discs respectively
N "X/-, equation (11)
p (h, z) instantaneous spatial pressure distribution in squeeze "lm (gauge, Pa)
p
c

cavitation pressure (gauge, Pa)
p
m

(h, z) modi"ed pressure distribution, de"ned in equation (5) (gauge, Pa)
p
S

supply pressure (gauge, Pa)
ps
x
, px

y
cosine coe$cients in Fourier expansions of Q

x
, Q

y
, equations (48)

p (v, X) left-hand side of equation (17)
P total number of degrees of freedom
P
N

number of degree of freedom associated with the motion dependent forces f
N

P
L

"P!P
N

P
x
, P

y
, P

xk
, P

yk
unbalance forces at U (Figure 4), U

k
(Figure 2(b)), equations (1) (N)

qs
x
, qs

y
sine coe$cients in Fourier expansions of Q

x
, Q

y
, equations (48)

q
xr
, q

yr
modal co-ordinates for vibration in xz and yz planes respectively, equation (54)

q vector of modal co-ordinates q
1
2q

H
, equation (23)

q
E

vector of modal co-ordinates of equilibrium periodic solution, equation (30)
Q

R
, Q

T
radial and tangential squeeze "lm forces on journal (N)

Q
x
, Q

y
Cartesian components of squeeze "lm forces on J in Figure 4 (N)

Q
xi
, Q

yi
Cartesian components of squeeze "lm forces on J

i
in Figure 2(a) (N)

QM
x
, QM

y
mean terms in Fourier expansions of Q

x
, Q

y
, equations (48)

R bearing bore (m)
R receptance matrix, de"ned by equation (8)
S matrix de"ned in equation (14)
S
0

zero frequency value of S
t time (s)
¹ period of rotation ("2n/X) (s)
T matrix de"ned in equation (14)
T
0

zero frequency value of T
u, u

L
, u

N
degrees of freedom vectors, de"ned in equation (7)

u
E

equilibrium periodic solution, equation (30)
u
HE

vector of RHB responses at H degrees of freedom, equations (44a, b)
u8 complex amplitude of u for u harmonic
u
C
, u

S
cosine and sine coe$cient vectors of u for u harmonic, equation (9a)

u6 , us
C
, us

S
Fourier coe$cient vectors of f, equation (12a)

;, ;
k

unbalance at U (Figure 4), ;
k
(Figure 2(b)), equations (1) (kgm)

U(q) periodic matrix de"ned in equation (39a)
v vector of unknown Fourier coe$cients in h1 , hs

C
, hs

Sv
aug

vector de"ned in equation (20)
V(q) periodic matrix de"ned in equation (39b)
w vector of perturbations in q, q@, equation (36)
= equivalent static load on squeeze "lm, equation (63) (N)
W(q) periodic matrix de"ned in equation (38)
W

k
matrix de"ned in equation (40)

X
Bi
, >

Bi
, X

Ji
, >

Ji
displacements of B

i
, J

i
(m)

X
J
, >

J
, X

P
, >

P
displacements of journal J and position P (m)

XM
J
, >M

J
, XM

P
, >M

P
mean terms in Fourier expansions of X

J
, >

J
, X

P
, >

P
respectively

z axial co-ordinate (m)
Mz

ij
(u)N impedance matrix, equation (59)

z vector of perturbations in q, equation (33)
a
ij
(u), b

ij
(u) x, y receptances between positions i and j (m/N)
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d
Ns

constant de"ned in equation (51)
e non-dimensional eccentricity of J from B"e/c
e
0xJ

, e
0yJ

non-dimensional x, y static misalignments of J ("e
0xJ

/c, e
0yJ

/c)
h angular position measured from maximum "lm thickness position (rad)
t attitude angle (rad)
tr
xi
, tr

yi
mass normalized mode shapes at position i in x, y directions (kg~0>5)

Wh mass normalized mode shape vector
/
k

phase shift of unbalance at U
k
(Figure 2(b)), equations (1) (rad)

j
l

leading eigenvalue of M or leading Floquet multiplier
g dynamic viscosity of oil (N s/m2)
q "-t, non-dimensional time
- fundamental frequency of receptance harmonic balance solution (rad/s)
u general frequency (rad/s)
u

0
natural frequency used to non-dimensionalize equation (18) (rad/s)

u
h

undamped natural frequency in mode h"12H (rad/s)
u

xr
, u

yr
undamped natural frequencies of mode r and xz and yz planes (rad/s)

p arc-length parameter
X rotor rotational speed (rad/s)
C period of harmonic balance periodic cycle ("N¹) (s)
( )R, ( )I applied to matrix: real and imaginary parts of ( ) respectively
( )T applied to matrix, vector ( ): transpose of ( )
( ) d( )/dt
( )@ d( )/dq
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